Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37328134

RESUMO

Copper oxide nanoparticles (CuO NPs) have received increasing interest due to their distinctive properties, including small particle size, high surface area, and reactivity. Due to these properties, their applications have been expanded rapidly in various areas such as biomedical properties, industrial catalysts, gas sensors, electronic materials, and environmental remediation. However, because of these widespread uses, there is now an increased risk of human exposure, which could lead to short- and long-term toxicity. This review addresses the underlying toxicity mechanisms of CuO NPs in cells which include reactive oxygen species generation, leaching of Cu ion, coordination effects, non-homeostasis effect, autophagy, and inflammation. In addition, different key factors responsible for toxicity, characterization, surface modification, dissolution, NPs dose, exposure pathways and environment are discussed to understand the toxicological impact of CuO NPs. In vitro and in vivo studies have shown that CuO NPs cause oxidative stress, cytotoxicity, genotoxicity, immunotoxicity, neurotoxicity, and inflammation in bacterial, algal, fish, rodents, and human cell lines. Therefore, to make CuO NPs a more suitable candidate for various applications, it is essential to address their potential toxic effects, and hence, more studies should be done on the long-term and chronic impacts of CuO NPs at different concentrations to assure the safe usage of CuO NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Animais , Humanos , Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Inflamação , Óxidos
2.
Phytochem Rev ; : 1-16, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37359710

RESUMO

Chimaphila umbellata has been studied for almost two centuries now, with the first paper exploring the phytochemistry of the plant published in 1860. Almost all contemporary studies focus on the biotechnological advances of C. umbellata including its utilization as a natural alternative in the cosmetic, food, biofuel, and healthcare industry, with a special focus on its therapeutic uses. This literature review critically investigates the significance and applications of secondary metabolites extracted from the plant and presses on the biotechnological approaches to improve its utilization. C. umbellata is home to many industrially and medicinally important phytochemicals, the majority of which belong to phenolics, sterols, and triterpenoids. Other important compounds include 5-hydroxymethylfurfural, isohomoarbutin, and methyl salicylate (the only essential oil of the plant). Chimaphilin is the characteristic phytochemical of the plant. This review focuses on the phytochemistry of C. umbellata and digs into their chemical structures and attributes. It further discusses the challenges of working with C. umbellata including its alarming conservation status, problems with in-vitro cultivation, and research and development issues. This review concludes with recommendations based on biotechnology, bioinformatics, and their crucial interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...